A probabilistic damage model based on direct 3-D correlation of strain to damage formation following fatigue loading of rat femora.
نویسندگان
چکیده
Microdamage accumulates in bone due to repetitive or excessive mechanical loading, and accumulation of damage can lead to an increase in fracture susceptibility. Understanding the stress or strain criterion for damage formation would allow improved predictive modeling to better assess experimental results or evaluate training regimens. Finite element models coupled with three-dimensional measurements of damage were used to directly correlate damage formation to the local strain state in whole rat femora subjected to three-point bending fatigue. Images of accumulated damage from contrast-enhanced micro-CT were overlaid onto the calculated strain result to determine the strain associated with damage. Most microdamage accumulated in areas where the first principal strain exceeded 0.5%, but damage also occurred at lower strains when applied over sufficiently large volumes. As such, a single threshold strain was not a good predictor of damage. In order to capture the apparently stochastic nature of damage formation, a Weibull statistical model was applied. The model provided a good fit to the data, and a fit based on a subset of the data was able to predict the results in the remaining samples with an RMS error of 17%. These results demonstrate that damage formation is dependent on principal strain, but has a random component that is likely due to the presence of pores or flaws smaller than the resolution of the model that act as stress concentrations in bone.
منابع مشابه
Cumulative Fatigue Damage Under stepwise Tension-Compression Loading
Rock structures are subjected to cyclic tension-compression loading due to a blasting, earthquake, traffic and injection-production in underground storage case. Therefore study the fatigue behavior of rock samples under this type of loading is required. In this study, the accumulated fatigue damage for a Green Onyx rock sample which consisted of only one mineral composition with two-step high-l...
متن کاملEnergy-Based Prediction of Low-Cycle Fatigue Life of CK45 Steel and SS316 Stainless Steel
In this paper, low cycle fatigue life of CK45 steel and SS316 stainless steel under strain-controlled loading are experimentally investigated. In addition, the impact of mean strain and strain amplitude on the fatigue life and cyclic behavior of the materials are studied. Furthermore, it is attempted to predict fatigue life using energy and SWT damage parameters. The experimental results demons...
متن کاملA Nonlinear Creep-damage Constitutive Model of Mudstone Based on the Fractional Calculus Theory
During the flood development in an oil field, the creep characteristic of mudstone is one of the important factors causing casing damage. In this study, based on the theory of fractional order differential and taking into account the creep damage evolution rules, a fractional nonlinear creep-damage model is proposed to reflect the instantaneous deformation in loading processes and the accelerat...
متن کاملDetermination of Asphalt Binder VECD Parameters Using an Accelerated Testing Procedure
Fatigue characteristics of asphalt binder have an important role in asphalt mix resistance against cracking. Viscoelastic Continuum Damage (VECD) analysis of asphalt binders has been successfully used in highway research works in order to predict fatigue behavior of hot mix asphalt (HMA). In this method an intrinsic property of the material, called damage function is obtained which is independe...
متن کاملFatigue modeling for a thermoplastic polymer under mean strain and variable amplitude loadings
The applicability of several fatigue damage models for polyether ether ketone (PEEK) under mean strain and variable amplitude multi-block loadings is evaluated. The models utilized in this study are assessed against experimental data for PEEK under various cyclic loading conditions, including (1) constant amplitude loading with non-zero mean strains, (2) two-block loading with zero and non-zero...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the mechanical behavior of biomedical materials
دوره 30 شماره
صفحات -
تاریخ انتشار 2014